(本小题满分12分)已知直线x-2y+2=0经过椭圆C:=1(>>0)的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS、BS与直线l:x=分别交于M、N两点.(1)求椭圆C的方程; (2)求线段MN的长度的最小值;(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为?若存在,确定点T的个数,若不存在,说明理由.
设函数 (1)当时,求函数的值域; (2)若函数是(-,+)上的减函数,求实数的取值范围
已知函数在x=1处取得极值, 求函数f(x)的单调区间.
已知集合 (1)当=3时,求; (2)若,求实数的值.
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
(1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程; (3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤? (参考数据:3×2.5+4×3+5×4+6×4.5=66.5)
已知a是实数,函数,如果函数在区间[-1,1]上有零点,求实数a的取值范围。