(本小题满分12分)已知直线x-2y+2=0经过椭圆C:=1(>>0)的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS、BS与直线l:x=分别交于M、N两点.(1)求椭圆C的方程; (2)求线段MN的长度的最小值;(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为?若存在,确定点T的个数,若不存在,说明理由.
解关于的不等式:
设,求函数的最小值及相应的值.
已知椭圆的离心率为,定点M(1,0),椭圆短轴的端点是B1,B2,且 (1)求椭圆C的方程; (2)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使PM平分∠APB?若存在,求出点P的坐标;若不存在,说明理由,
已知函数. (1)若函数f(x)的图象在处的切线斜率为3,求实数m的值; (2)求函数f(x)的单调区间; (3)若函数在[1,2]上是减函数,求实数m的取值范围.
数列为正项等比数列,且满足;设正项数列的前n项和为Sn,满足. (1)求的通项公式; (2)设的前项的和Tn.