某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中 120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1) 问各班被抽取的学生人数各为多少人?(2) 在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.
(本小题满分14分)设都是正数,且,试用反证法证明:和中至少有一个成立.
(本小题满分14分)已知函数,. (1)求的最小正周期及的最小值; (2)若,且,求的值.
(本小题满分14分)已知命题和命题.若“”与“非”同时为假命题,求实数的值.
(本小题满分16分)设函数(). (1)若,求函数的极大值; (2)若存在,使得在区间[0,2]上的最小值,求实数t的取值范围; (3)若(e)对任意的恒成立时m的最大值为,求实数t的取值范围.
(本小题满分16分)已知点为椭圆上的任意一点(长轴的端点除外),、分别为左、右焦点,其中a,b为常数. (1)若点P在椭圆的短轴端点位置时,为直角三角形,求椭圆的离心率. (2)求证:直线为椭圆在点P处的切线方程; (3)过椭圆的右准线上任意一点R作椭圆的两条切线,切点分别为S、T.请判断直线ST是否经过定点?若经过定点,求出定点坐标,若不经过定点,请说明理由.