(本小题满分13分)已知:函数对一切实数都有成立,且.(1)求的值;(2)求的解析式; (3)已知,设P:当时,不等式恒成立;Q:当时,是单调函数。如果满足P成立的的集合记为,满足Q成立的的集合记为,求∩(为全集)
已知数列{an}中,a1=8,a4=2,且满足an+2+an=2an+1. (1)求数列{an}的通项公式; (2)设Sn是数列{|an|}的前n项和,求Sn.
已知数列{an}为等差数列,若<-1,且它们的前n项和Sn有最大值,求使得Sn<0的n的最小值.
已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110. (1)求a及k的值; (2)设数列{bn}的通项bn=,证明数列{bn}是等差数列,并求其前n项和Tn.
已知在等差数列{an}中,a1=31,Sn是它的前n项和,S10=S22. (1)求Sn; (2)这个数列的前多少项的和最大,并求出这个最大值.
已知等差数列{an}的前n项和为Sn,n∈N*,且满足a2+a4=14,S7=70. (1)求数列{an}的通项公式; (2)若bn=,则数列{bn}的最小项是第几项,并求该项的值.