已知函数,(1)若函数的图像在点处的切线与直线平行,且在处取得极值,求的解析式,并确定的单调递减区间。(2)若时,函数在上是减函数,求b的取值范围。
已知,且。求证:中至少有一个是负数。
在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。(1)根据以上数据建立一个2×2的列联表;(2)判断性别与休闲方式是否有关系。附:
如图所示的曲线是由部分抛物线和曲线“合成”的,直线与曲线相切于点,与曲线相切于点,记点的横坐标为,其中.(1)当时,求的值和点的坐标;(2)当实数取何值时,?并求出此时直线的方程.
设抛物线,为焦点,为准线,准线与轴交点为(1)求;(2)过点的直线与抛物线交于两点,直线与抛物线交于点.①设三点的横坐标分别为,计算:及的值;②若直线与抛物线交于点,求证:三点共线.
已知函数,设(1)试确定的取值范围,使得函数在上为单调函数;(2)求函数在上的最小值.