(本小题满分14分)设是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列.(1)证明:为等比数列;(2)设,求数列的前项和.
(本小题满分16分)如图,有一个长方形地块ABCD,边AB为2km, AD为4 km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S(单位: ).(1)求S关于t的函数解析式,并指出该函数的定义域;(2)是否存在点P,使隔离出的△BEF面积S超过3 ?并说明理由.
在三棱锥P-ABC中,D为AB的中点。(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC。
在平面直角坐标系中,角的终边经过点.(1)求的值;(2)若关于轴的对称点为,求的值.
(本小题满分14分)已知函数,其中,.(1)当,时,求函数的最小值;(2)当,且为常数时,若函数对任意的,总有成立,试用表示出的取值范围.
(本小题满分14分)已知椭圆()的离心率为,右焦点到直线的距离为.(1)求椭圆的标准方程;(2)过椭圆右焦点,斜率为()的直线与椭圆相交于、两点,为椭圆的右顶点,直线,分别交直线于点,,线段的中点为,记直线的斜率为,求证:为定值.