(本题满分14分)在平面直角坐标系中,设点(1,0),直线:,点在直线上移动,是线段与轴的交点, .(Ⅰ)求动点的轨迹的方程;(Ⅱ)记的轨迹的方程为,过点作两条互相垂直的曲线的弦、,设、 的中点分别为.求证:直线必过定点.
(本小题满分12分)已知直线l经过点(0,-2),其倾斜角是60°.(1)求直线l的方程;(2)求直线l与两坐标轴围成三角形的面积.
已知集合M={x|x2-3x+2=0},N={},Q={1,m2+1,m+1}(1)求MN;(2) 若MQ,求实数m的值。
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.我们把定义在上,且满足(其中常数满足)的函数叫做似周期函数.(1)若某个似周期函数满足且图像关于直线对称.求证:函数是偶函数;(2)当时,某个似周期函数在时的解析式为,求函数,的解析式;(3)对于确定的时,,试研究似周期函数函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由.
(本题满分16分) 本题共有3个小题,第1小题满分7分,第2小题满分7分,第3小题满分2分. 设直线交椭圆于两点,交直线于点.(1)若为的中点,求证:;(2)写出上述命题的逆命题并证明此逆命题为真;(3)请你类比椭圆中(1)、(2)的结论,写出双曲线中类似性质的结论(不必证明).
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.已知,,满足. (1)将表示为的函数,并求的最小正周期;(2)已知分别为的三个内角对应的边长,若对所有恒成立,且,求的取值范围.