(本小题满分12分)如图,为圆的直径,点、在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且, .(Ⅰ)求四棱锥的体积;(Ⅱ)求证:平面平面;(Ⅲ)在线段上是否存在一点,使得平面,并说明理由.
如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于 (1)求证:⊥EF; (2)求
在一个盒子里装有4枝圆珠笔,其中3枝一等品,1枝三等品 (1)从盒子里任取2枝恰有1枝三等品的概率多大? (2)从盒子里第一次任取1枝(不放回),第二次任取1枝;第一次取的是三等品,第二次取的是一等品的概率有多大?
已知函数 (1)当时,求的最大值及相应的x值; (2)利用函数y=sin的图象经过怎样的变换得到f(x)的图象.
设 (1)求f(x)的单调区间; (2)求f(x)的零点个数.
已知点直线AM,BM相交于点M,且. (1)求点M的轨迹的方程; (2)过定点(0,1)作直线PQ与曲线C交于P,Q两点,且,求直线PQ的方程.