(本题8分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于 E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD ﹦6, AC ﹦8,则⊙O的半径为 ▲ ,CE的长是 ▲ .
如图,已知一次函数的图象经过,两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求的值;(3)求证:.
如图,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).(1)当t为何值时,PQ∥BC.(2)设△AQP的面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD. (1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.
体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全部销售完后共获利润260元.
(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?
完成下列各题:(1)如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.求证:BC="AD." (2)如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.