(本小题满分12分)已知函数,.(1)若函数是单调递增函数,求实数的取值范围;(2)当时,两曲线有公共点P,设曲线在P处的切线分别为,若切线与轴围成一个等腰三角形,求P点坐标和的值;(3)当时,讨论关于的方程的根的个数。
如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点在斜边上. (1)求证:平面平面; (2)求与平面所成角的最大角的正切值.
如图,在四棱锥中,底面是正方形,侧棱⊥底面,,是的中点,作交于点. (1)证明平面; (2)证明平面.
.四边形与都是边长为的正方形,点是的中点,平面. (1)求证:平面平面; (2)求三棱锥的体积.
在直三棱柱中,,,求: (1)异面直线与所成角的余弦值; (2)直线到平面的距离.
已知函数,函数是区间上的减函数. (1)求的最大值; (2)若恒成立,求的取值范围; (3)讨论关于的方程的根的个数.