(本小题满分12分)如图在三棱锥P-ABC中,PA=3,AC=AB=4,PB=PC=BC=5,D、E分别是BC、AC的中点,F为PC上的一点,且PF:FC=3:1。(Ⅰ)求证:;(Ⅱ)试在PC上确定一点G,使平面ABG//平面DEF;(Ⅲ)在满足(Ⅱ)的情况下,求直线GB与平面ABC所成角的正弦值。
在中,角的对边分别为,向量.(1)若,求证:;(2)若,,求的值.
已知函数,设数列满足:,.(1)求证:,都有;(2)求证:
某商场举办“迎新年摸球”活动,主办方准备了甲、乙两个箱子,其中甲箱中有四个球,乙箱中有三个球(每个球的大小、形状完全相同),每一个箱子中只有一个红球,其余都是黑球. 若摸中甲箱中的红球,则可获奖金元,若摸中乙箱中的红球,则可获奖金元. 活动规定:①参与者每个箱子只能摸一次,一次摸一个球;②可选择先摸甲箱,也可先摸乙箱;③如果在第一个箱子中摸到红球,则可继续在第二个箱子中摸球,否则活动终止.(1)如果参与者先在乙箱中摸球,求其恰好获得奖金元的概率;(2)若要使得该参与者获奖金额的期望值较大,请你帮他设计摸箱子的顺序,并说明理由.
在极坐标系中,求圆上的点到直线()距离的最大值.
已知直线在矩阵对应的变换作用下变为直线,求矩阵.