(本小题满分14分)已知在[-1,0]和[0,2]上有相反的单调性.(Ⅰ)求c的值;(Ⅱ)若的图象上在两点、处的切线都与y轴垂直,且函数f(x)在区间[m,n]上存在零点,求实数b的取值范围;(Ⅲ)若函数f(x)在[0,2]和[4,5]上有相反的单调性,在f(x)的图象上是否存在一点M,使得f(x)在点M的切线斜率为2b?若存在,求出M点坐标;若不存在,请说明理由.
已知椭圆的长轴两端点分别为,是椭圆上的动点,以为一边在轴下方作矩形,使,交于点,交于点. (Ⅰ)如图(1),若,且为椭圆上顶点时,的面积为12,点到直线的距离为,求椭圆的方程; (Ⅱ)如图(2),若,试证明:成等比数列.
如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将与接通.已知,,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设与所成的小于的角为. (Ⅰ)求矩形区域内的排管费用关于的函数关系式; (Ⅱ)求排管的最小费用及相应的角.
设数列的前项和为,对任意满足,且. (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前项和.
如图,四棱锥的底面为矩形,,,分别是的中点,. (Ⅰ)求证:平面; (Ⅱ)求证:平面平面.
已知向量,,,其中为的内角. (Ⅰ)求角的大小; (Ⅱ)若,且,求的长.