已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点,(Ⅰ)求椭圆的方程(Ⅱ)若坐标原点到直线的距离为,求面积的最大值
(本小题满分12分) 已知函数()的最小正周期为. (Ⅰ)求的值; (Ⅱ)求函数在区间上的取值范围.
设函数 (Ⅰ)当时,求函数的单调区间; (Ⅱ)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围; (Ⅲ)当,时,方程在区间内有唯一实数解,求实数的取值范围.
定义在R上的奇函数有最小正周期4,且时,. (1)求在上的解析式; (2)判断在上的单调性,并给予证明; (3)当为何值时,关于方程在上有实数解?
某同学用“五点法”画函数()在某一个周期内的图象时,列表并填入的部分数据如下表:
(Ⅰ)请求出上表中的,并直接写出函数的解析式; (Ⅱ)将的图象沿x轴向右平移个单位得到函数,若函数在(其中上的值域为,且此时其图象的最高点和最低点分别为、,求与夹角θ的大小.
学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点,过点;当时,图象是线段,其中.根据专家研究,当注意力指数大于62时,学习效果最佳. (1)试求的函数关系式; (2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.