已知各项均为正数的数列{an}满足2a2n+1+3an+1an-2a2n=0(n)且a3+是a2,a4的等差中项,数列{bn}的前n项和Sn=n2(1)求数列{an}与{bn}的通项公式;(2)若Tn=,求证:Tn<(3)若cn=-,T/n=c1+c2+…+cn,求使T/n+n2n+1>125成立的正整数n的最小值
已知集合A={y|y=x2-x+1,x∈[,2]},B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,求实数m的取值范围.
设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围.
设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(A)∩B=⌀,求m的值.
如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D,E分别是AA1,CB1的中点,DE⊥面CBB1. (1)证明:DE∥面ABC; (2)求四棱锥CABB1A1与圆柱OO1的体积比.
右图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2. (1)请画出该几何体的三视图; (2)求四棱锥BCEPD的体积.