((本小题满分14分)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
将一个长、宽分别的长方形的四个角切去四个相同的正方形,然后折成一个无盖的长方体形的盒子, (Ⅰ)设切去小正方形的边长为,用表示这个长方体的外接球的半径; (Ⅱ)若这个长方体的外接球的体积存在最小值,求的取值范围.
(本小题满分10分)如图,四棱锥的底面是正方形,,点在棱上. (Ⅰ)求证:平面; (Ⅱ)当且为的中点时,求与平面所成的角的大小.
(本小题满分10分)如图所示,在三棱柱中,平面,,,. (Ⅰ)求三棱锥的体积; (Ⅱ)若是棱的中点,为的中点,证明平行平面
如图,是一个奖杯的三视图(单位:cm),底座是正四棱台. (Ⅰ)求这个奖杯的体积(取); (Ⅱ)求这个奖杯底座的侧面积.
(本小题满分12分)已知数列满足,数列满足. (1)证明数列是等差数列,并求数列的通项公式; (2)求数列的前项和.