(本小题满分10分)选修4—1:几何证明选讲如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM·MB=DF·DA.
设函数且,当点是函数图象上的点时,点是函数图象上的点. (1)写出函数的解析式; (2)若当时,恒有,试确定的取值范围.
在直三棱柱中,平面,其垂足落在直线上. (Ⅰ)求证:; (Ⅱ)若,,为的中点,求三棱锥的体积.
已知函数.当时,解不等式;若存在实数,使得不等式成立,求实数的取值范围.
已知函数f(x)=ax2+x-a,. (1)若函数f(x)有最大值,求实数a的值; (2)当时,解不等式f(x)>1.
已知z,y之间的一组数据如下表:
(1)从x ,y中各取一个数,求x+y≥10的概率; (2)对于表中数据,甲、乙两同学给出的拟合直线分别为与,试利用“最小平方法(也称最小二乘法)”判断哪条直线拟合程度更好.