(本小题满分10分)选修4—1:几何证明选讲如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM·MB=DF·DA.
数列的各项均为正数,为其前n项和,对于任意的,总有成等差数列(1)求数列的通项公式:(2)设数列前n项和为,且,求证对任意的实数和任意的正整数n,总有.
如图,四棱锥中,.,F为PC的中点,.(1)求的长:(2)求二面角的正弦值.
盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同(1)从盒中一次随机抽出2个球,求取出的2个球颜色相同的概率:(2)从盒中一次随机抽出4个球,其中红球,黄球,绿球的个数分别记为,随机变量X表示中的最大数,求X的概率分布列和数学期望.
已知锐角中,角A、B、C所对的边分别为a,b,c,且(1)求角A的大小:(2)求的取值范围.
已知函数.(1)若对于都有成立,试求a的取值范围;(2)记,当时,函数在区间上有两个零点,求实数b的取值范围.