(本小题满分12分)电信局为了配合客户的不同需要,设有A、B两种优惠方案,这两种方案的应付电话费(元)与通话时间(分钟)之间的关系如图所示(实线部分)(注:图中MN//CD).试问:(Ⅰ)若通话时间为2小时,按方案A、B各付话费多少元?(Ⅱ)方案B从500分钟后,每分钟收费多少元?(Ⅲ)通话时间在什么范围内,方案B才会比方案A优惠?
设,若将适当排序后可构成公差为1的等差数列的前三项.(Ⅰ)求的值及的通项公式;(Ⅱ)记函数的图象在轴上截得的线段长为,设,求
证明以下命题:(Ⅰ)对任一正整a,都存在整数b,c(b<c),使得成等差数列。(Ⅱ)存在无穷多个互不相似的三角形△,其边长为正整数且成等差数列。
在数列中,=0,且对任意k,成等差数列,其公差为2k。(Ⅰ)证明成等比数列;(Ⅱ)求数列的通项公式;
已知为等差数列,且,。(Ⅰ)求的通项公式;(Ⅱ)若等差数列满足,,求的前n项和公式
(本小题满分14分)设与分别是实系数方程和的一个根,且 ,求证:方程有仅有一根介于和之间.