(本小题满分12分)电信局为了配合客户的不同需要,设有A、B两种优惠方案,这两种方案的应付电话费(元)与通话时间(分钟)之间的关系如图所示(实线部分)(注:图中MN//CD).试问:(Ⅰ)若通话时间为2小时,按方案A、B各付话费多少元?(Ⅱ)方案B从500分钟后,每分钟收费多少元?(Ⅲ)通话时间在什么范围内,方案B才会比方案A优惠?
如图,在四棱锥中,平面,底面是菱形,,,为与的交点,为棱上一点. (Ⅰ)证明:平面⊥平面; (Ⅱ)若平面,求三棱锥的体积.
数列{}的前项和为,是和的等差中项,等差数列{}满足,. (1)求数列,的通项公式; (2)若,求数列的前项和.
已知的最小正周期为. (1)求的值; (2)在中,角所对应的边分别为,若有,则求角的大小以及的取值范围.
已知函数. (1)求的最大值,并求出此时的值; (2)写出的单调区间.
选修4—5:不等式选讲 设函数. (1)当时,解不等式; (2)若的解集为,,求证:.