在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?
在△ABC中,角A,B,C所对的边分别为a,b,c且满足. (Ⅰ)求角C的大小; (Ⅱ)求的最大值,并求取得最大值时角A的大小.
某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.求该公司从每天生产的甲、乙两种产品中,可获得的最大利润.
已知向量a=(1,2),b=(-2,m),m∈R. (Ⅰ)若a∥b,求m的值; (Ⅱ)若a⊥b,求m的值.
已知函数(是不为零的实数,为自然对数的底数). (1)若曲线与有公共点,且在它们的某一公共点处有共同的切线,求k的值; (2)若函数在区间内单调递减,求此时k的取值范围.
下面四个图案,都是由小正三角形构成,设第n个图形中所有小正三角形边上黑点的总数为. 图1图2图3图4 (1)求出,,,; (2)找出与的关系,并求出的表达式; (3)求证:().