(本小题满分7分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为且过顶点C(0,5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元 / ,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5 m,求斜面EG的坡度.
图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?
如图,△ABC的三个顶点都在⊙O上,AP⊥BC于P,AM为⊙O的直径. 求证:∠BAM=∠CAP.
如图,AB是⊙O 的直径,CD是⊙O的一条弦,且CD⊥AB于点E. (1)求证:∠BCO=∠D; (2)若CD=,AE=2,求⊙O的半径.
如图,一次函数y=kx+b的图象与反比例函数y=的[图象交于A、B两点. (1)利用图中的条件,求反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
已知二次函数图象的对称轴是,且函数有最大值为2, 图象与x轴的一个交点是 (-1,0),求这个二次函数的解析式.