(本小题满分14分)如图所示,已知圆为圆上一动点,点P在AM上,点N在CM上,且满足轨迹为曲线E.(1)求曲线E的方程;(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足,求的取值范围.
设函数, (1)若函数在处与直线相切; ①求实数的值;②求函数上的最大值; (2)当时,若不等式对所有的都成立,求实数的取值范围.
如图,四棱锥的底面为矩形,且,,,(Ⅰ)平面与平面是否垂直?并说明理由;(Ⅱ)求直线与平面所成角的正弦值.
一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为,记. (1)分别求出取得最大值和最小值时的概率;(2)求的分布列及数学期望.
已知数列的前项和为,满足. (1)求; (2)令,求数列的前项和. (3)设,若对任意的正整数,均有,求实数的取值范围.
已知△ABC中,角A、B、C的对边为a,b,c,向量=,且. (1)求角C; (2)若,试求的值.