(本小题满分14分)如图所示,已知圆为圆上一动点,点P在AM上,点N在CM上,且满足轨迹为曲线E.(1)求曲线E的方程;(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足,求的取值范围.
(本小题满分12分)如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=(2),BC=2,且AE=AH=CF=CG,设AE=,绿地面积为.(1)写出关于的函数关系式,指出这个函数的定义域.(2)当AE为何值时,绿地面积最大?
函数是奇函数,且当时是增函数,若,求不等式的解集。
(10分)设, 若,且,求的值。
(本小题满分14分)已知(,为此函数的定义域)同时满足下列两个条件:①函数在内单调递增或单调递减;②如果存在区间,使函数在区间上的值域为,那么称,为闭函数;请解答以下问题:(1) 求闭函数符合条件②的区间;(2) 判断函数是否为闭函数?并说明理由;(3)若是闭函数,求实数的取值范围;
(本小题满分13分)设是定义在上的函数,对任意实数、,都有,且当<0时,>1.(1)证明:①;②当>0时,0<<1;③是上的减函数;(2)设,试解关于的不等式;