(本小题满分12分)已知关于的不等式对任意恒成立;,不等式成立。若为真,为假,求的取值范围。
(本小题12分) 已知数列{an}中,a1="1" ,a2=3,且点(n,an)满足函数y = kx + b.(1)求k,b的值,并写出数列{an}的通项公式; (2)记,求数列{bn}的前n和Sn.
(本小题10分) 围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x米,总费用为y(单位:元). (1)将y表示为x的函数; (2)试确定x,使修建此矩形场地围墙的总费用最小, 并求出最小总费用.
(本小题10分)在△ABC中,角A,B,C的对边分别为,且满足,. (1)求△ABC的面积. (2)若,求的值.
((本小题12分) 已知指数函数满足:g(2)=4,定义域为的函数是奇函数。 (1)确定的解析式; (2)求m,n的值; (3)若对任意的,不等式恒成立,求实数的取值范围。
((本小题12分) 如图, 在三棱柱中, 底面,, ,, 点D是的中点. (1) 求证; (2) 求证平面