(本小题满分13分)海岛B上有一座为10米的塔,塔顶的一个观测站A,上午11时测得一游船位于岛北偏东15°方向上,且俯角为30°的C处,一分钟后测得该游船位于岛北偏西75°方向上,且俯角45°的D处。(假设游船匀速行驶)(I)求该船行使的速度(单位:米/分钟)(II)又经过一段时间后,油船到达海岛B的正西方向E处,问此时游船距离海岛B多远。
已知直线的极坐标方程为,圆的参数方程为(其中为参数)(1)判断直线圆的位置关系;(2)若椭圆的参数方程为(为参数),过圆的圆心且与直线垂直的直线与椭圆相交于两点,求.
已知矩阵M=,(1)求矩阵M的逆矩阵;(2)求矩阵M的特征值和特征向量;(3)试计算.
已知(-)n展开式中第三项的系数比第二项的系数大162,求:(1) n的值;(2)展开式中含x3的项.
已知函数(其中常数),( 是圆周率).(1)当时,若函数是奇函数,求的极值点;(2)当时,求函数的单调递增区间;(3)当时,求函数在上的最小值,并探索:是否存在满足条件的实数,使得对任意的,恒成立.
,是方程的两根, 数列是公差为正的等差数列,数列的前项和为,且.(1)求数列,的通项公式;(2)记=,求数列的前项和.