(本小题满分12分)2010年夏舟曲发生特大泥石流,为灾后重建,对某项工程进行竞标,现共有6家企业参与竞标,其中A企业来自辽宁省,B、C两家企业来自福建省,D、E、F三家企业来自河南省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同。(Ⅰ)列举所有企业的中标情况;(Ⅱ)在中标的企业中,至少有一家来自福建省的概率是多少?
已知向量=(-cos(-),sin(-)),=([cos(-)+sin(-)][cos(-)-sin(-)],2cos2-1). (1)求证:⊥ (2)设=+(t2+3),=-k+t,=(∈[-8,0]),若存在不等于0的实数和(∈[1,2]),满足⊥,试求的最小值,并求出的最小值.
的取值范围为[0,10],给出如图所示程序框图,输入一个数. (1)请写出程序框图所表示的函数表达式; (2)求输出的()的概率; (3)求输出的的概率.
从某学校高三年级800名学生中随机抽取50名测量身高,据测量,被抽取学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],下图是按上述分组方法得到的条形图. (1)根据已知条件填写下面表格:
(2)估计这所学校高三年级800名学生中身高在175cm以上(含175cm)的人数; (3)在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为同性别学生的概率是多少?
已知,,是一个平面内的三个向量,其中=(1,3). (1)若||=2,∥,求及; (2)若||=,且-3与2+垂直,求与的夹角.
已知函数=-cos2x+2cos2(-x)-1. (1)求的最小正周期; (2)求在区间[-,]上的取值范围.