(本小题满分15分)已知点,一动圆过点且与圆内切.(Ⅰ)求动圆圆心的轨迹的方程;(Ⅱ)设点,点为曲线上任一点,求点到点距离的最大值;(Ⅲ)在的条件下,设△的面积为(是坐标原点,是曲线上横坐标为的点),以为边长的正方形的面积为.若正数满足,问是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
在△ABC中,a,b,c分别为内角A,B,C的对边,且2asin A=(2b+c)sin B+(2c+b)sin C.(1)求A的大小;(2)若sin B+sin C=1,试判断△ABC的形状.
已知等差数列{an}满足a2=2,a5=8.(1)求{an}的通项公式;(2)各项均为正数的等比数列{bn}中,b1=1,b2+b3=a4,求{bn}的前n项和Tn.
解关于x的不等式≤ (其中a>0且a≠1).
在数列{an}中,a1=1,an+1=2an+2n.(1)设bn=.证明:数列{bn}是等差数列;(2)求数列{an}的前n项和Sn.
在△ABC中,a、b、c分别是角A、B、C的对边,且=-.(1)求角B的大小;(2)若b=,a+c=4,求△ABC的面积.