(本小题满分12分)小明参加一次比赛,比赛共设三关。第一、二关各有两个问题,两个问题全答对,可进入下一关。第三关有三个问题,只要答对其中两个问题,则闯关成功。每过一关可一次性获得价值分别为100、300、500元的奖励。小明对三关中每个问题回答正确的概率依次为、、,且每个问题回答正确与否相互独立。(1)求小明过第一关但未过第二关的概率;(2)用表示小明所获得奖品的价值,求的分布列和期望。
已知圆内有一点,为过点且倾斜角为的弦, (1)当时,求弦的长. (2)当弦被点平分时,求出弦所在直线的方程.
设为关于n的k次多项式.数列{an}的首项,前n项和为.对于任意的正整数n,都成立. (1)若,求证:数列{an}是等比数列; (2)试确定所有的自然数k,使得数列{an}能成等差数列
若函数为定义域上单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数是上的正函数,区间叫做等域区间. (1)已知是上的正函数,求的等域区间; (2)试探究是否存在实数,使得函数是上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.
若椭圆()过点,离心率为,的圆心为原点,直径为椭圆的短轴,的方程为,过上任一点作的切线,,切点为,。 (1)求椭圆的方程; (2)若直线与的另一交点为,当弦最大时,求直线的方程; (3)求的最大值与最小值。
如图,某兴趣小组测得菱形养殖区的固定投食点到两条平行河岸线的距离分别为4m、8m,河岸线与该养殖区的最近点的距离为1m,与该养殖区的最近点的距离为2m. (1)如图甲,养殖区在投食点的右侧,若该小组测得,请据此算出养殖区的面积; (2)如图乙,养殖区在投食点的两侧,试在该小组未测得的大小的情况下,估算出养殖区的最小面积.