数列的各项均为正数,为其前项和,对于任意,总有成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为 ,且,求证:对任意正整数,总有 2;(Ⅲ)正数数列中,,求数列中的最大项.
已知数列是公差为的等差数列,且. (1)求数列的通项公式; (2)设数列的前项和为. 证明:.
如图:已知长方体的底面是边长为的正方形,高,为的中点,与交于点. (1)求证:平面; (2)求证:∥平面; (3)求三棱锥的体积.
甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下: 甲 86 77 92 72 78 乙 78 82 88 82 95 (1)用茎叶图表示这两组数据;. (2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算); (3)若从甲、乙两人的5次成绩中各随机抽取一个,求甲的成绩比乙高的概率.
已知函数的图象过点. (1)求实数的值; (2)求函数的最小正周期及最大值.
已知集合, 具有性质:对任意的,至少有一个属于. (1)分别判断集合与是否具有性质; (2)求证:①; ②; (3)当或时集合中的数列是否一定成等差数列?说明理由.