数列的各项均为正数,为其前项和,对于任意,总有成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为 ,且,求证:对任意正整数,总有 2;(Ⅲ)正数数列中,,求数列中的最大项.
设函数(Ⅰ)求的最小正周期及值域;(Ⅱ)已知中,角的对边分别为,若,,,求的面积.
已知椭圆经过点,其离心率为,设直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)已知直线与圆相切,求证:(为坐标原点);(Ⅲ)以线段为邻边作平行四边形,若点在椭圆上,且满足(为坐标原点),求实数的取值范围.
已知等差数列中,,公差;数列中,为其前n项和,满足:(Ⅰ)记,求数列的前项和;(Ⅱ)求证:数列是等比数列;(Ⅲ)设数列满足,为数列的前项积,若数列满足,且,求数列的最大值.
如图,中,是的中点,,.将沿折起,使点与图中点重合.(Ⅰ)求证:;(Ⅱ)当三棱锥的体积取最大时,求二面角的余弦值;(Ⅲ)在(Ⅱ)的条件下,试问在线段上是否存在一点,使与平面所成的角的正弦值为?证明你的结论.
已知函数,其中(Ⅰ)求函数的定义域;(Ⅱ)若对任意恒有,试确定的取值范围.