(本小题满分12分) 某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数与听课时间之间的关系满足如图所示的曲线.当时,曲线是二次函数图象的一部分,当式,曲线是函数(且)图象的一部分.根据专家研究,当注意力指数大于等于80时听课效果最佳.(1) 试求的函数关系式;(2) 老师在什么时段内安排核心内容能使得学生听课效果最佳?请说明理由.
如图,正三棱柱ABC—A1B1C1的底面边长为a,点M在边 BC上,△AMC1是以点M为直角顶点的等腰直角三角形。(Ⅰ)求证点M为边BC的中点;(Ⅱ)求点C到平面AMC1的距离;(Ⅲ)求二面角M—AC1—C的大小。
已知函数(I)求函数的最小值和最小正周期;(II)设△的内角对边分别为,且,若与共线,求的值.
已知函数.()(1)若在区间上单调递增,求实数的取值范围;(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.
已知递增等差数列满足:,且成等比数列.(1)求数列的通项公式;(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.
已知函数.(1)求在区间上的最大值;(2)若函数在区间上存在递减区间,求实数m的取值范围.