已知函数是定义在(–1,1)上的奇函数,且, ①求函数f(x)的解析式;②判断函数f(x)在(–1,1)上的单调性并用定义证明;③解关于x的不等式.
设抛物线的准线与轴交点为,过点 作直线交抛物线与不同的点两点.(1)求线段中点的轨迹方程;(2)若线段的垂直平分线交抛物线对称轴与,求证:.
单调函数f(x)满足f(x + y)= f(x) + f(y),且f(1)=2,其定义域为R。 (1)求f(0)、f(2)、f(4)的值; (2)解不等式f(x2+ 3 x) < 8。
如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程
双曲线 (a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥c.求双曲线的离心率e的取值范围.
如图椭圆 (a>b>0)的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上.(1)求椭圆的离心率;(2)若平行四边形OCED的面积为, 求椭圆方程.