(满分12分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+b-1(a≠0).(1)当a=1,b=-2时,求f(x)的不动点;(2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
已知函数=ax2+(b-8)x-a-ab , 当x(-∞,-3)(2,+∞)时, <0,当x(-3,2)时>0 . (1)求在[0,1]内的值域. (2)若ax2+bx+c≤0的解集为R,求实数c的取值范围.
已知函数 (a>0) (1)判断并证明y=在x∈(0,+∞)上的单调性; (2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值,并求出不动点; (3)设=,若y=在(0,+∞)上有三个零点 , 求的取值范围.
已知数列的前n项和为,且满足=2+n (n>1且n∈) (1)求数列的通项公式和前n项的和 (2)设,求使得不等式成立的最小正整数n的值
(12分)右图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC//PD,且PD=AD=2CE=2 . (1)若N为线段PB的中点,求证:EN⊥平面PDB; (2)求该几何体的体积;