(本小题满分13分)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.
已知, . (1)判断的奇偶性并加以证明; (2)判断的单调性并用定义加以证明; (3)当的定义域为时,解关于m的不等式.
探究函数的图像时,.列表如下:
观察表中y值随x值的变化情况,完成以下的问题: ⑴函数的递减区间是 ,递增区间是 ; ⑵若对任意的恒成立,试求实数m的取值范围.
已知实数,曲线与直线的交点为(异于原点),在曲线上取一点,过点作平行于轴,交直线于点,过点作平行于轴,交曲线于点,接着过点作平行于轴,交直线于点,过点作平行于轴,交曲线于点,如此下去,可以得到点,,…,,… .设点的坐标为,. (Ⅰ)试用表示,并证明; (Ⅱ)试证明,且(); (Ⅲ)当时,求证:().
如下图所示,在直角坐标系中,射线在第一象限,且与轴的正半轴成定角,动点在射线上运动,动点在轴的正半轴上运动,的面积为. (Ⅰ)求线段中点的轨迹的方程; (Ⅱ)是曲线上的动点, 到轴的距离之和为, 设为到轴的距离之积.问:是否存在最大的常数, 使恒成立?若存在,求出这个的值;若不存在,请说明理由.
已知函数,函数 . (1)若的值域为,求实数的取值范围; (2)当时,求函数的最小值; (3)是否存在非负实数m、n,使得函数的定义域为,值域为, 若存在,求出、的值;若不存在,则说明理由.