(本小题满分14分) 已知函数在处取得极值。(Ⅰ)求函数的解析式;(Ⅱ)求证:对于区间上任意两个自变量的值,都有;(Ⅲ)若过点可作曲线的三条切线,求实数的取值范围。
袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率: (1)A:取出的两球都是白球; (2)B:取出的两球1个是白球,另1个是红球.
如图,在棱长为1的正方体中,点分别是的中点. (1)求证:. (2)求与所成角的余弦值.
20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示. (1)求频率分布直方图中的值; (2)分别求出成绩落在[50,60)与[60,70)中的学生人数.
已知都是非零实数,且,求证:的充要条件是.
在平面直角坐标系中,椭圆的中心为原点,焦点在轴上,离心率为,过点的直线交椭圆于两点,且的周长为16,求椭圆的标准方程.