(本小题满分12分)在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的。假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的。(1)求蜜蜂落入第二实验区的概率;(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率.
已知函数,h(x)=2alnx,. (1)当a∈R时,讨论函数的单调性; (2)是否存在实数a,对任意的,且,都有 恒成立,若存在,求出a的取值范围;若不存在,说明理由.
“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为: 且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴. (1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损; (2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且. (1)求证:; (2)求证:平面; (3)求二面角的余弦值.
已知数列的前项和为,且是和的等差中项,等差数列满足,. (1)求数列、的通项公式; (2)设,数列的前项和为,求的取值范围.
已知函数f(x)=. (1)当时,求的值域; (2)若的内角的对边分别为,且满足,,求的值.