(本小题满分12分)已知函数. (Ⅰ)若,试确定函数的单调递增区间;(Ⅱ)若对于任意试确定实数的取值范围;(Ⅲ)若函数=在上有两个零点,求实数的取值范围.
(本小题满分14分) 已知长方形ABCD, AB=2,BC=1.以AB的中点为原点建立如图8所示的平面直角坐标系. (Ⅰ)求以A、B为焦点,且过C、D两点的椭圆的标准方程; (Ⅱ)过点P(0,2)的直线交(Ⅰ)中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.
(本小题满分14分) 某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用; (2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.
(本小题满分14分) 如图,在直角梯形中,,,.将沿折起,使平面平面,得到几何体,如图2所示.(Ⅰ)求证:平面;(Ⅱ)求几何体的体积.
(本小题满分12分) 设AB=6,在线段AB上任取两点(端点A,B除外),将线段AB分成三条线段, (Ⅰ)若分成三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (Ⅱ)若分成三条线段的长度均为正实数,求这三条线段可以构成三角形的概率;
(本小题满分12分) 已知:A、B、C是的内角,分别是其对边长,向量,,. (Ⅰ)求角A的大小; (Ⅱ)若求的长.