(本题满分14分).如图,圆锥的轴截面SAB为等腰直角三角形,Q为底面圆周上的一点,如果QB的中点为C,OH⊥SC,垂足为H。求证:BQ⊥平面SOC,求证:OH⊥平面SBQ;设,,求此圆锥的体积。
(本题满分10分)已知双曲线C:为C上的任意点. (Ⅰ)求证:点到双曲线C的两条渐近线的距离的乘积是一个常数; (Ⅱ)设点A的坐标为(3,0),求的最小值.
(本题满分8分)已知椭圆C的方程是,直线过右焦点,与椭圆交于两点. (Ⅰ)当直线的倾斜角为时,求线段的长度; (Ⅱ)当以线段为直径的圆过原点时,求直线的方程.
(本题满分8分)求下列曲线的的标准方程: (1)离心率且椭圆经过. (2)渐近线方程是,经过点.
定义 (1)令函数的图象为曲线c1,曲线c1与y轴交于点A(0,m),过坐标原点O作曲线c1的切线,切点为B(n,t)(n>0)设曲线c1在点A、B之间的曲线段与OA、OB所围成图形的面积为S,求S的值; (2)当
已知曲线上有一点列,点在x轴上的射影是,且,. (1)求数列的通项公式; (2)设四边形的面积是,求证: