已知。(1)求的单调区间。(2)若在上的最大值为20,求它在该区间上的最小值。
已知函数.(1)求函数的定义域;(2)若不等式有解,求实数的取值范围.
设全集,,.求:(1);(2).
已知函数在处取得极值,其中为常数.(1)求的值;(2)讨论函数的单调区间;(3)若对任意,不等式恒成立,求的取值范围.
如图,已知⊙与⊙外切于点,是两圆的外公切线,,为切点,与 的延长线相交于点,延长交⊙于 点,点在延长线上.(1)求证:是直角三角形;(2)若,试判断与能否一定垂直?并说明理由.(3)在(2)的条件下,若,,求的值.
设在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片,标号分别记为,设随机变量.(1)写出的可能取值,并求随机变量的最大值;(2)求事件“取得最大值”的概率;(3)求的分布列和数学期望与方差.