(满分14分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。(1)求的值及的表达式。(2)隔热层修建多厚时,总费用达到最小,并求最小值。
如图, 在四棱锥 P - ABCD 中, 平面 PAD ⊥ 平面 ABCD , PA ⊥ PD , PA = PD , AB ⊥ AD , AB = 1 , AD = 2 , AC = CD = 5 .
(1) 求证: PD ⊥ 平面 PAB ;
(2) 求直线 PB 与平面 PCD 所成角的正弦值;
(3) 在棱 PA 上是否存在点 M , 使得 BM / / 平面 PCD ? 若存在, 求 AM AP 的值; 若不存在, 说明理由.
A、B、C三个班共有 100 名学生, 为调查他们的体育锻炼情况,通过分层抽样获得了部分学生 一周的锻炼时间, 数据如下表(单位:小时);
A 班
66 . 5
7
7 . 58
B 班
6
8
9
10
11
12
C 班
3
4 . 5
7 . 5
10 . 5
13 . 5
(1)试估计 C 班的学生人数;
(2) 从 A 班和 C 班抽出的学生中, 各随机选取一人, A 班选出的人记为甲, C 班选出的人记 为乙, 假设所有学生的锻炼时间相对独立, 求该周甲的锻炼时间比乙的钗炼时间长的概率;
(3) 再从 A、B、C三个班中各随机抽取一名学生, 他们该周的锻炼时间分别是 7, 9, 8.25 (单位:小时), 这3个新数据与表格中的数据构成的新样本的平均数记 μ 1 , 表格中数据的平均数记为 μ 0 , 试判断 μ 0 和 μ 1 的大小, (结论不要求证明)
在 Δ ABC 中, a 2 + c 2 = b 2 + 2 ac .
(1) 求 ∠ B 的大小;
(2) 求 2 cos A + cos C 的最大值.
已知 f ( x ) = | x - a | x + | x - 2 | ( x - a ) .
(1)当 a = 1 时,求不等式 f ( x ) < 0 的解集;
(2)若 x ∈ ( - ∞ , 1 ) 时, f ( x ) < 0 ,求 a 的取值范围.
在极坐标系中,O为极点,点 M ( ρ 0 , θ 0 ) ( ρ 0 > 0 ) 在曲线 C : ρ = 4 sin θ 上,直线l过点 A ( 4 , 0 ) 且与 OM 垂直,垂足为P.
(1)当 θ 0 = π 3 时,求 ρ 0 及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.