(本小题满分12分)一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分。(1)若从袋子里一次随机取出3个球,求得4分的概率;(2)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分的概率分布列及数学期望。
设关于x的方程sinx+cosx+a=0在(0,π)内有相异解α、β.(1)求a的取值范围;(2)求tan(α+β)的值.
设f(x)=x2–2ax+2,当x∈[–1,+∞)时,f(x)>a恒成立,求a的取值范围
已知函数 (1)求(2)当的值域。
在中,分别是的对边长,已知.(Ⅰ)若,求实数的值;(Ⅱ)若,求面积的最大值.
设函数。(1)写出函数的最小正周期及单调递减区间;(2)当时,函数的最大值与最小值的和为,求的图象、y轴的正半轴及x轴的正半轴三者围成图形的面积。