如图,在直三棱柱ABC—A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA。(I)当k=1时,求证PA⊥B1C;(II)当k为何值时,直线PA与平面BB1C1C所成的角的正弦值为,并求此时二面角A—PC—B的余弦值。
(本小题满分13分) 已知向量m=n=. (1)若m·n=1,求的值; (2)记函数f(x)= m·n,在中,角A,B,C的对边分别是a,b,c,且满足求f(A)的取值范围.
已知定义在区间(0,+∞)上的函数f(x)满足f(+f(x2)=f(x1),且当x>1时,f(x)<0. (1)求f(1)的值; (2)判断f(x)的单调性并加以证明; (3)若f(3)=-1,解不等式f(|x|)>-2.
(本小题满分12分)、已知函数(,)为偶函数,且函数图象的两相邻对称轴间的距离为. (Ⅰ)求的值; (Ⅱ)将函数的图象向右平移个单位后,得到函数的图象,求的单调递减区间.
(本小题满分12分) 若为二次函数,-1和3是方程的两根, (1)求的解析式; (2)若在区间上,不等式有解,求实数m的取值范围。
(本小题满分12分) 已知, ,而非P是非q的必要条件,但不是充分条件,求实数m的取值范围。