(本小题满分12分)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品(百台),其总成本为万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入满足。假定该产品销售平衡,那么根据上述统计规律。(1)要使工厂有盈利,产品应控制在什么范围?(2)工厂生产多少台产品时赢利最大?并求此时每台产品的售价为多少?
已知函数,其中常数. (Ⅰ)当时,求函数的极值点; (Ⅱ)证明:对任意恒成立; (Ⅲ)对于函数图象上的不同两点,如果在函数图象上存在点(其中),使得在点M处的切线∥AB,则称直线AB存在“伴侣切线”.特别地,当,又称直线AB存在“中值伴侣切线”. 试问:当时,对于函数图象上不同两点A、B,直线AB是否存在“中值伴侣切线”,并证明你的结论.
已知椭圆:,,其中是椭圆的右焦点,焦距为,直线与椭圆交于点,,点,的中点横坐标为,且(其中). (1)求椭圆的标准方程; (2)求实数的值.
已知三棱柱中,侧棱垂直于底面,,,,,点在上. (1)若是中点,求证:平面; (2)当时,求二面角的余弦值.
一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买两种商品的概率均为,购买两种商品的概率均为,购买种商品的概率为.假设该网民是否购买这五种商品相互独立. (1)求该网民至少购买4种商品的概率; (2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.
在△A BC,a,b,c分别是角A,B,C的对边,且. (Ⅰ)求B的大小; (Ⅱ)若,求△A BC的面积.