(本小题满分12分)设二次函数,函数的两个零点为.(1)若求不等式的解集;(2)若且,比较与的大小.
已知数列的前项和.(1) 求数列{}的通项公式;(2)设,求数列{}的前项和.
设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足.”(1)判断函数是否是集合M中的元素,并说明理由;(2)集合M中的元素具有下面的性质:若的定义域为D,则对于任意,都存在,使得等式成立”,试用这一性质证明:方程只有一个实数根;(3)设是方程的实数根,求证:对于定义域中任意的,当,且时,.
已知椭圆两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点. (1)求P点坐标; (2)求证直线AB的斜率为定值; (3)求△PAB面积的最大值。
已知数列的前n项和满足:(a为常数,且). (Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求a的值;(Ⅲ)在满足条件(Ⅱ)的情形下,设,数列的前n项和为Tn .求证:.
椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-e, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且.(1)求椭圆方程;(2)若,求m的取值范围.