(本小题满分12分)如图,ABCD是正方形空地,正方形的边长为30m,电源在点P处,点P到边AD、AB的距离分别为9m、3m。某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN:NE=16:9。线段MN必须过点P,满足M、N分别在边AD、AB上,设,液晶广告屏幕MNEF的面积为(1)求S关于的函数关系式,并与出该函数的定义域;(2)当取何值时,液晶广告屏幕MNEF的面积S最小?
已知的边所在直线的方程为,满足, 点在所在直线上且. (Ⅰ)求外接圆的方程; (Ⅱ)一动圆过点,且与的 外接圆外切,求此动圆圆心的轨迹的方程; (Ⅲ)过点斜率为的直线与曲线交于相异的两点,满足,求的取值范围.
设函数. (Ⅰ)若,求的最小值; (Ⅱ)若,讨论函数的单调性.
如图,PA垂直于矩形ABCD所在的平面,,E、F分别是AB、PD的中点. (Ⅰ)求证:平面PCE 平面PCD; (Ⅱ)求三棱锥P-EFC的体积.
数列的各项均为正数,为其前项和,对于任意,总有成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前项和.
如图,在直三棱柱中,,,为的中点. (1) 求证:平面; (2) 求证:∥平面.