(本小题12分)已知函数f(x)=ax3+x2-2x+c,过点,且在(-2,1)内单调递减,在[1,上单调递增。(1)证明sinθ=1,并求f(x)的解析式。(2)若对于任意的x1,x2∈[m,m+3](m≥0),不等式|f(x1)-f(x2)|≤恒成立。试问这样的m是否存在,若存在,请求出m的范围,若不存在,说明理由。(3)已知数列{an}中,a1∈,an+1=f(an),求证:an+1>8·lnan(n∈N*)。
设函数的图象在点处的切线方程为. (1)求的值; (2)求函数的单调递增区间,并求函数在上的最大值和最小值。
已知是首项为1,公差为2的等差数列,表示的前项和。 (1)求及; (2)设数列的前项和为,求证:当都有成立。
如图,在长方体中,==1,,点E是线段AB中点. (1)求证:; (2)求二面角的大小的余弦值; (3)求点到平面的距离.
为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如表所示:
(1)估计这60名乘客中候车时间少于10分钟的人数; (2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
已知函数,. (1)求的值; (2)若,,求