(本小题满分12分)(I)求向量;(II)若映射①求映射f下(1,2)原象;②若将(x、y)作点的坐标,问是否存在直线l使得直线l上任一点在映射f的作用下,仍在直线上,若存在求出l的方程,若不存在说明理由
如图,已知四棱锥的底面是菱形,平面,,点为的中点. (Ⅰ)求证:平面; (Ⅱ)求二面角的正切值.
已知函数在同一周期内有最高点和最低点,(1)求此函数的解析式;(2)函数的图像如何由函数的图像变换得到?
如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题: (1)79.5到89.5这一组的频数、频率分别是多少? (2)估计这次环保知识竞赛的及格率(分及以上为及格).
二次函数f(x)与g(x)=x2-1的图像开口大小相同,开口方向也相同,y=f(x)的对称轴方程为x=1,图像过点(2, )点 (1)求f(x)的解析式; (2)是否存在大于1的实数m,使y=f(x)在[1, m]上的值域是[1, m]?若存在,求出m的值,若不存在,说明理由.
已知函数f(x)=, x∈[3, 5] (1)判断f(x)单调性并证明; (2)求f(x)最大值,最小值.