圆过点,圆心在上,并与直线相切,求该圆的方程。
如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动. (I)求三棱锥E—PAD的体积; (II)试问当点E在BC的何处时,有EF//平面PAC; (1lI)证明:无论点E在边BC的何处,都有PEAF.
已知a,b,c分别为ABC的三个内角A,B,C的对边,=(sinA,1),=(cosA,),且//. (I)求角A的大小; (II)若a=2,b=2,求ABC的面积.
某校从参加市联考的甲、乙两班数学成绩110分以上的同学中各随机抽取8人,将这l6人的数学成绩编成茎叶图,如图所示. (I)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为l22分,试推算这个污损的数据是多少? (Ⅱ)现要从成绩在130分以上的5位同学中选2位作数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率.
已知函数f(x)=2ax--(2+a)lnx(a≥0) (Ⅰ)当时,求的极值; (Ⅱ)当a>0时,讨论的单调性; (Ⅲ)若对任意的a∈(2,3),x1,x2∈[1,3],恒有成立,求实数m的取值范围。
已知椭圆C:的离心率与等轴双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆C的短半轴长为半径的圆相切。 (Ⅰ)求椭圆C的方程; (Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(―1,―1)