((本小题满分13分)已知函数(1) 当时,求在区间上的取值范围;(2) 当时,,求的值。
设到定点的距离和它到直线距离的比是. (Ⅰ)求点的轨迹方程; (Ⅱ)为坐标原点,斜率为的直线过点,且与点的轨迹交于点,,若,求△的面积.
在梯形中,,,,,如图把沿翻折,使得平面平面. (Ⅰ)求证:平面; (Ⅱ)若点为线段中点,求点到平面的距离.
某市为了了解“陕西分类招生考试”宣传情况,从四所中学的学生当中随机抽取50名学生参加问卷调查,已知四所中学各抽取的学生人数分别为15,20,10,5. (Ⅰ)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率; (Ⅱ)在参加问卷调查的名学生中,从来自两所中学的学生当中随机抽取两名学生,用表示抽得中学的学生人数,求的分布列及期望值.
已知是一个单调递增的等差数列,且满足,,数列的前项和为,数列满足. (Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.
选修4—5:不等式选讲 已知函数,. (Ⅰ)当时,求不等式的解集; (Ⅱ)设,且当时,,求a的取值范围.