如图,三棱锥A—BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形. (Ⅰ)求证:DM//平面APC;
(Ⅱ)求 证:平面ABC⊥平面APC;
(本小题满分12分) 已知椭圆的右顶点为,点在椭圆上,且它的横坐标为1,点,且. ⑴求椭圆的方程;⑵若过点的直线与椭圆交于另一点,若线段的垂直平分线经过点,求直线的方程.
(本小题满分12分) 如图,在多面体中,四边形是正方形,平面,,,,,点是的中点. ⑴求证:平面; ⑵求二面角的余弦值.
(本小题满分12分) 某人向一目标射击,在处射击一次击中目标的概率为,击中目标得2分;在处射击一次击中目标的概率为,击中目标得1分.若他射击三次,第一次在处射击,后两次都在处射击,用表示他3次射击后得的总分,其分布列为:
⑴求及的数学期望; ⑵求此人3次都选择在处向目标射击且得分高于2分的概率.
.(本小题满分12分) 已知函数,. ⑴求函数的最小正周期;⑵求函数的最小值,并求使取得最小值时的取值集合.
函数是定义在上的奇函数,且. (1)求实数,并确定函数的解析式; (2)用定义证明在上是增函数; (3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值 或最小值.(本小问不需说明理由)