(本小题满分12分)已知函数。(1)求函数在区间上的最大值和最小值; (2)求证:在区间上函数的图像在函数的图像下方。
(本小题12分)已知函数的部分图象如图所示. (1)求函数的解析式,并写出的单调减区间; (2)已知的内角分别是,角为锐角,且,求的值.
(本小题10分)已知数列是公比不为的等比数列,,且成等差数列. (1)求数列的通项; (2)若数列的前项和为,试求的最大值.
(本小题12分)已知函数. (1)若=0,判断函数的单调性; (2)若时,<0恒成立,求的取值范围.
(本小题12分)过椭圆右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为8,椭圆的离心率为. (1)求椭圆C的方程; (2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点P,Q,且⊥?若存在,求出该圆的方程;若不存在,请说明理由.
(本小题12分)如图,在四棱锥中,底面ABCD,底面ABCD是直角梯形,,,,是的中点 (1)求证:平面平面; (2)若二面角的余弦值为,求直线与平面所成角的正弦值.