(本小题满分10分) 已知函数f(x)= m·log2x + t的图象经过点A(4,1)、点B(16,3)及点C(Sn,n),其中Sn为数列{an}的前n项和,n∈N*. (Ⅰ)求Sn和an; (Ⅱ)设数列{bn}的前n项和为Tn , bn = f(an) – 1, 求不等式Tn£ bn的解集,n∈N*.
已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数). (1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程; (2)若直线l与曲线C相交于A、B两点,且,试求实数m值.
已知直线的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为. (1)把圆C的极坐标方程化为直角坐标方程; (2)将直线向右平移h个单位,所得直线与圆C相切,求h.
在直角坐标系xoy中,曲线C1的参数方程为(t为参数),P为C1上的动点,Q为线段OP的中点. (1)求点Q的轨迹C2的方程; (2)在以O为极点,x轴的正半轴为极轴(两坐标系取相同的长度单位)的极坐标系中,N为曲线p=2sinθ上的动点,M为C2与x轴的交点,求|MN|的最大值.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为(为参数),点Q的极坐标为。 (1)化圆C的参数方程为极坐标方程; (2)直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线的直角坐标方程。