某地需要修建一条大型输油管道通过120公里宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程只需要在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的工程费用为432万元,铺设距离为公里的相邻两增压站之间的输油管道费用为万元.设余下工程的总费用为万元.(Ⅰ)试将表示成关于的函数; (Ⅱ)需要修建多少个增压站才能使最小?
已知复数满足,的虚部是2. (1)求复数; (2)设在复平面上的对应点分别为,求的面积.
(本小题满分14分) 已知函数满足如下条件:当时,,且对任意,都有. (1)求函数的图象在点处的切线方程; (2)求当,时,函数的解析式; (3)是否存在,,使得等式 成立?若存在就求出(),若不存在,说明理由.
(本小题满分14分) 执行下面框图所描述的算法程序,记输出的一列数依次为,,…,,,.(注:框图中的赋值符号“”也可以写成“”或“:”) (1)若输入,写出输出结果; (2)若输入,求数列的通项公式; (3)若输入,令,求常数(),使得是等比数列.
(本小题满分14分) 平面直角坐标系中,已知直线:,定点,动点到直线的距离是到定点的距离的2倍. (1)求动点的轨迹的方程; (2)若为轨迹上的点,以为圆心,长为半径作圆,若过点可作圆的两条切线,(,为切点),求四边形面积的最大值.
(本小题满分14分) 如图8,在直角梯形中,,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面互相垂直,如图9. (1)求证:平面平面; (2)求平面与平面所成锐二面角的大小.