某地需要修建一条大型输油管道通过120公里宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程只需要在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的工程费用为432万元,铺设距离为公里的相邻两增压站之间的输油管道费用为万元.设余下工程的总费用为万元.(Ⅰ)试将表示成关于的函数; (Ⅱ)需要修建多少个增压站才能使最小?
已知函数 (1)当时,求的单调递增区间; (2)当且时,的值域是求的值
已知函数=, (1)求函数的单调区间 (2)若关于的不等式对一切(其中)都成立,求实数的取值范围; (3)是否存在正实数,使?若不存在,说明理由;若存在,求取值的范围
椭圆:的右焦点为且为常数,离心率为,过焦点、倾斜角为的直线交椭圆与M,N两点, (1)求椭圆的标准方程; (2)当=时,=,求实数的值; (3)试问的值是否与直线的倾斜角的大小无关,并证明你的结论
已知抛物线的焦点与椭圆的右焦点重合,抛物线的顶点在坐标原点,过点的直线与抛物线交于A,B两点, (1)写出抛物线的标准方程 (2)求⊿ABO的面积最小值
已知函数, (1)求的单调递减区间; (2)若在区间上的最大值为20,求它在该区间的最小值