某地需要修建一条大型输油管道通过120公里宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程只需要在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的工程费用为432万元,铺设距离为公里的相邻两增压站之间的输油管道费用为万元.设余下工程的总费用为万元.(Ⅰ)试将表示成关于的函数; (Ⅱ)需要修建多少个增压站才能使最小?
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种 产品受欢迎的概率分别为,且不同种产品是否受欢迎相互独立.记为公司向市场投放三种新型产品受欢迎的数量,其分布列为
(Ⅰ)求该公司至少有一种产品受欢迎的概率; (Ⅱ)求的值; (Ⅲ)求数学期望.
如图,四棱锥的底面是矩形,,且侧面是正三角形,平面平面, (Ⅰ)求证:; (Ⅱ)在棱上是否存在一点,使得二面角的大小为45°.若存在,试求的值,若不存在,请说明理由.
已知函数. (1)若,求的值; (2)设△三内角所对边分别为且,求在上的值域.
已知函数 (Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围; (Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由; (Ⅲ)当x∈(0,e]时,证明:
已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1. (Ⅰ)求椭圆E的方程; (Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.