如图,△ABC内接于圆O,AB是圆O的直径,,,设AE与平面ABC所成的角为,且,四边形DCBE为平行四边形,DC平面ABC.(1)求三棱锥C-ABE的体积;(2)证明:平面ACD平面ADE;(3)在CD上是否存在一点M,使得MO//平面ADE?证明你的结论.
(本小题满分12分)已知某校四个社团的学生人数分别为10,5,20,15.现为了了解社团活动开展情况,用分层抽样的方法从四个社团的学生当中随机抽取10名学生参加问卷调查. (Ⅰ)从四个社团中各抽取多少人? (Ⅱ)在社团所抽取的学生总数中,任取2个,求社团中各有1名学生的概率.
【改编】(本小题满分12分)已知数列的前项和为,满足. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前n项和.
(本小题满分13分)椭圆()的左焦点为,右焦点为,离心率.设动直线与椭圆相切于点且交直线于点,的周长为. (1)求椭圆的方程; (2)求两焦点、到切线的距离之积; (3)求证:以为直径的圆恒过点
【原创】已知函数. (Ⅰ)若在区间上为单调递增函数,求实数的取值范围; (Ⅱ)若,设直线为函数的图象在处的切线,求证:.
(本小题满分13分)已知数列的前项之和为(),且满足. (1)求证:数列是等比数列,并求数列的通项公式; (2)求证:.