(本小题满分12分)如图,在四边形ABCD中,AC⊥BD,垂足为O,PO⊥平面ABCD,AO=BO=DO=1,CO=PO=2,E是线段PA上的点,AE∶AP=1∶3. (1) 求证:OE∥平面PBC; (2) 求二面角D-PB-C的大小.
(本小题满分14分)在平面直角坐标系中,已知椭圆过点,且椭圆的离心率为.(1)求椭圆的方程;(2)是否存在以为直角顶点且内接于椭圆的等腰直角三角形?若存在,求出共有几个;若不存在,请说明理由.
(本小题满分14分)已知等差数列的公差,它的前项和为,若,且,,成等比数列.(1)求数列的通项公式;(2)设数列的前项和为,求证:.
(本小题满分13分)在四棱锥中,底面,底面是直角梯形,,,,.(1)求证:;(2)求证:平面;
某高校在2015年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
(1)请先求出频率分布表中①、②位置相应的数据;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求第4组至少有一名学生被考官A面试的概率?
(本小题满分12分)已知函数.(1)求函数的最小正周期和值域;(2)若为第三象限角,且,求的值.